On the structure of connected locally compact groups
نویسندگان
چکیده
منابع مشابه
Pseudoframe multiresolution structure on abelian locally compact groups
Let $G$ be a locally compact abelian group. The concept of a generalized multiresolution structure (GMS) in $L^2(G)$ is discussed which is a generalization of GMS in $L^2(mathbb{R})$. Basically a GMS in $L^2(G)$ consists of an increasing sequence of closed subspaces of $L^2(G)$ and a pseudoframe of translation type at each level. Also, the construction of affine frames for $L^2(G)$ bas...
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملFinitely generated connected locally compact groups
Hofmann and Morris [6] proved that a locally compact connected group G has a finite subset generating a dense subgroup if and only if the weight w(G) of G does not exceed c , the cardinality of the continuum. The minimum cardinality of such a topological generating set is an invariant of the group, is denoted by σ(G), and is called the topological rank of G . For compact abelian groups of weigh...
متن کاملpseudoframe multiresolution structure on abelian locally compact groups
let $g$ be a locally compact abelian group. the concept of a generalized multiresolution structure (gms) in $l^2(g)$ is discussed which is a generalization of gms in $l^2(mathbb{r})$. basically a gms in $l^2(g)$ consists of an increasing sequence of closed subspaces of $l^2(g)$ and a pseudoframe of translation type at each level. also, the construction of affine frames for $l^2(g)$ bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 1976
ISSN: 0025-584X,1522-2616
DOI: 10.1002/mana.19760750118