On the structure of connected locally compact groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudoframe multiresolution structure on abelian locally compact groups

‎Let $G$ be a locally compact abelian group‎. ‎The concept of a generalized multiresolution structure (GMS) in $L^2(G)$ is discussed which is a generalization of GMS in $L^2(mathbb{R})$‎. ‎Basically a GMS in $L^2(G)$ consists of an increasing sequence of closed subspaces of $L^2(G)$ and a pseudoframe of translation type at each level‎. ‎Also‎, ‎the construction of affine frames for $L^2(G)$ bas...

متن کامل

On component extensions locally compact abelian groups

Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...

متن کامل

Bracket Products on Locally Compact Abelian Groups

We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).

متن کامل

Finitely generated connected locally compact groups

Hofmann and Morris [6] proved that a locally compact connected group G has a finite subset generating a dense subgroup if and only if the weight w(G) of G does not exceed c , the cardinality of the continuum. The minimum cardinality of such a topological generating set is an invariant of the group, is denoted by σ(G), and is called the topological rank of G . For compact abelian groups of weigh...

متن کامل

pseudoframe multiresolution structure on abelian locally compact groups

‎let $g$ be a locally compact abelian group‎. ‎the concept of a generalized multiresolution structure (gms) in $l^2(g)$ is discussed which is a generalization of gms in $l^2(mathbb{r})$‎. ‎basically a gms in $l^2(g)$ consists of an increasing sequence of closed subspaces of $l^2(g)$ and a pseudoframe of translation type at each level‎. ‎also‎, ‎the construction of affine frames for $l^2(g)$ bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 1976

ISSN: 0025-584X,1522-2616

DOI: 10.1002/mana.19760750118